Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 14(10)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37893262

ABSTRACT

With the advantages of superior wear resistance, mechanical durability, and stability, the liquid-solid triboelectric nanogenerator (LS-TENG) has been attracting much attention in the field of energy harvesting and self-powered sensors. However, most of the studies on LS-TENG focused on device innovations, changes in solid materials, and the effect of solid properties on output performance, and there is a lack of studies on liquids, especially at the molecular level. A U-tube LS-TENG was assembled to conduct experiments, whereby the effects of molecular structures, including molecular composition, carbon chain length, functional groups and material properties on the output performance were investigated. The deuterium replacing hydrogen and the atomic compositions could not achieve the enhancement of the output performance. Whether the chemical functional groups improve the output performance of LS-TENG depends on the mating solid material. Hydroxyl and cyanogenic groups can improve the output performance for the FEP case, while amide and cyanogenic groups can improve the output performance for the PTFE case. The order of output performances for functional groups of four groups of liquids with both FEP and PTFE materials is also obtained. It was also found that the dielectric constant is not positively correlated with the output performance. The results of this study might provide a reference for the deeper study and application of LS-TENG.

2.
Environ Sci Pollut Res Int ; 30(48): 105885-105896, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37718361

ABSTRACT

Pt-V bimetallic catalysts maybe promising substitutes to precious metal catalysts for selective catalytic oxidation (SCO) of NH3. But it remains a major challenge for Pt-V bimetallic catalysts to pursue high NH3 conversion rate and N2 selectivity simultaneously. In this work, both Cu and Er were adopted to modify V0.5/Pt0.04/TiO2 catalyst (denoted as V/PT), and the influences of Cu and Er doping amounts on NH3-SCO performance of V/PT catalysts were investigated systematically. The results indicated that the co-modification of Cu and Er imposed little influence on NH3 conversion efficiency, but significantly boosted N2 selectivity. Compared with other Cu-Er-modified V/PT catalysts, CEV/PT-4 catalyst exhibited outstanding NH3-SCO performance, which attained completely 100% NH3 conversion efficiency and > 90% N2 selectivity in the temperature range of 225-450 °C. It was significantly superior to the NH3-SCO performance of most previously reported catalysts. The characterization results indicated that the adequate doping amounts of Cu and Er resulted in an obvious enhancement on redox property and surface acidity of CEV/PT-4 catalyst. It also led to abundant Pt0 and surface chemisorbed oxygen species on catalyst surface, which facilitated the oxidation of NH3 to NOx and enhanced i-SCR reactions. In situ DRIFTS results showed that -NH2 species on the surface of CEV/PT-4 catalyst could actively react with nitrate species to generate N2 and H2O.


Subject(s)
Ammonia , Titanium , Oxidation-Reduction , Nitrates , Catalysis
3.
Environ Pollut ; 334: 122110, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37390915

ABSTRACT

A novel dielectrophoresis (DEP)-assisted device for the bioremediation of heavy metal ions by using Chlorella microalgae is presented in this paper. To generate the DEP forces, pairs of electrode mesh were inserted in the DEP-assisted device. By applying DC electric field via the electrodes, the inhomogeneous electric field gradient is induced and the strongest non-uniform electric field exists near the mesh cross-corner. After the adsorption of Cd and Cu heavy metal ions by Chlorella, the Chlorella chain were trapped along the vicinity of the electrode mesh. Then, the effects of Chlorella concentration on the adsorption of heavy metal ions, and the applied voltage and electrode mesh size on the removal of Chlorella are conducted. In the co-existing Cd and Cu solutions, the individual adsorption ratio of Cd and Cu reaches as high as approximately 96% and 98%, respectively, showing excellent bioremediation capability of multiple heavy metal ions in wastewater. By adjusting the applied electric voltage and the mesh size, the Chlorella adsorbed with Cd and Cu are captured by negative DC-DEP effects and the removal ratio of Chlorella reach an average of 97%, providing a method for the removal of multiple heavy metal ions in wastewater by using Chlorella microalgae.


Subject(s)
Chlorella , Metals, Heavy , Microalgae , Water Pollutants, Chemical , Cadmium/analysis , Wastewater , Metals, Heavy/analysis , Ions/analysis , Adsorption , Water Pollutants, Chemical/analysis
4.
Electrophoresis ; 44(15-16): 1210-1219, 2023 08.
Article in English | MEDLINE | ID: mdl-37075199

ABSTRACT

Wear debris analysis provides an early warning of mechanical transmission system aging and wear fault diagnosis, which has been widely used in machine health monitoring. The ability to detect and distinguish the ferromagnetic and nonmagnetic debris in oil is becoming an effective way to assess the health status of machinery. In this work, an Fe-poly(dimethylsiloxane) (PDMS)-based magnetophoretic method for the continuous separation of ferromagnetic iron particles by diameter and the isolation of ferromagnetic particles and nonmagnetic particles with similar diameter by type is developed. The particles experience magnetophoretic effects when passing through the vicinity of the Fe-PDMS where the strongest gradient of the magnetic fields exists. By choosing a relatively short distance between the magnet and the sidewall of the horizontal main channel and the length of Fe-PDMS with controlled particles flow rate, the diameter-dependent separation of ferromagnetic iron particles, that is, smaller than 7 µm, in the range of 8-12 µm, and larger than 14 µm, and the isolation of ferromagnetic iron particles and nonmagnetic aluminum particles based on opposite magnetophoretic behaviors by types are demonstrated, providing a potential method for the detection of wear debris particles with a high sensitivity and resolution and the diagnostic of mechanical system.


Subject(s)
Magnets , Microfluidics , Iron
5.
Article in English | MEDLINE | ID: mdl-36834379

ABSTRACT

In the removal of nitric oxide (NO) by sodium chlorite (NaClO2), the NaClO2 concentration is usually increased, and an alkaline absorbent is added to improve the NO removal efficiency. However, this increases the cost of denitrification. This study is the first to use hydrodynamic cavitation (HC) combined with NaClO2 for wet denitrification. Under optimal experimental conditions, when 3.0 L of NaClO2 with a concentration of 1.00 mmol/L was used to treat NO (concentration: 1000 ppmv and flow rate: 1.0 L/min), 100% of nitrogen oxides (NOx) could be removed in 8.22 min. Furthermore, the NO removal efficiency remained at 100% over the next 6.92 min. Furthermore, the formation of ClO2 by NaClO2 is affected by pH. The initial NOx removal efficiency was 84.8-54.8% for initial pH = 4.00-7.00. The initial NOx removal efficiency increases as the initial pH decreases. When the initial pH was 3.50, the initial NOx removal efficiency reached 100% under the synergistic effect of HC. Therefore, this method enhances the oxidation capacity of NaClO2 through HC, realizes high-efficiency denitrification with low NaClO2 concentration (1.00 mmol/L), and has better practicability for the treatment of NOx from ships.


Subject(s)
Nitric Oxide , Sulfur Dioxide , Hydrodynamics , Nitrogen Oxides , Oxidation-Reduction
6.
Entropy (Basel) ; 25(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36673320

ABSTRACT

Due to its simple structure and lack of moving parts, the supersonic air ejector has been widely applied in the fields of machinery, aerospace, and energy-saving. The performance of the ejector is influenced by the flow channel structure and the velocity of the jet, thus the confined jet is an important limiting factor for the performance of the supersonic air ejector. In order to investigate the effect of the confined jet on the performance of the ejector, an air ejector with a rectangular section was designed. The effects of the section width (Wc) on the entrainment ratio, velocity distribution, turbulent kinetic energy distribution, Mach number distribution, and vorticity distribution of the rectangular section air ejector were studied numerically. The numerical results indicated that the entrainment ratio of the rectangular section air ejector increased from 0.34 to 0.65 and the increment of the ER was 91.2% when the section width increased from 1 mm to 10 mm. As Wc increased, the region of the turbulent kinetic energy gradually expanded. The energy exchange between the primary fluid and the secondary fluid was mainly in the form of turbulent diffusion in the mixing chamber. In addition to Wc limiting the fluid flow in the rectangular section air ejector, the structure size of the rectangular section air ejector in the XOY plane also had a limiting effect on the internal fluid flow. In the rectangular section air ejector, the streamwise vortices played an important role in the mixing process. The increase of Wc would increase the distribution of the streamwise vortices in the constant-area section. Meanwhile, the distribution of the spanwise vortices would gradually decrease.

7.
Micromachines (Basel) ; 13(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36422433

ABSTRACT

Resonant frequency tracking control of electromagnetic acoustic transducers (EMATs) remains a challenge in terms of drifting working frequency and reduced conversion efficiency caused by working environment changes. This paper presents a fixed-time nonsingular integral terminal sliding mode (FT-NITSM) control strategy for resonant frequency tracking of EMATs to realize precise and high robustness resonant frequency tracking performance. Specifically, a FT-NITSM control method with fast convergence feature is developed and a resonant frequency tracking controller for EMATs is further designed to improve the convergence speed and tracking accuracy. Fixed time stability of the proposed frequency tracking control system is proved through Lyapunov function analysis. Moreover, numerical simulations demonstrate that the FT-NITSM control strategy can ensure precise tracking of the system's operating frequency to its natural resonant frequency in less than 3 s with a tracking error of less than 0.01 × 104 Hz. With the maximum overshoot variation between -20 and 20 and error range in -5 and 5° at the steady state, the FT-NITSM control strategy can ensure the control system impedance angle θ being consistent and eventually bounded. This study provides a toolbox for the resonant frequency tracking control and performance improvement of EMATs.

8.
Materials (Basel) ; 15(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36234356

ABSTRACT

Recycling crushed waste oyster shells (WOS) as a fine aggregate is an attractive method of disposal. However, its use in geopolymer mortar has not been reported. The influence of PVA fibres on the engineering properties of the new geopolymer mortar is still unclear. To bridge the gap, this study investigated the influence of various PVA fibre contents (0-1.05 vol%) on the flowability, compressive, flexural strengths, drying shrinkage, sorptivity, chloride resistance, porosity, fibre dispersion, embodied CO2 emissions (ECO2e), and embodied energy (EE) of the geopolymer mortar. The results indicated that the inclusion of 0.15-1.05 vol% of PVA fibres improved the flexural strength by 10.10-42.31% and reduced the drying shrinkage by 13.37-65.79%. The flowability and compressive strength decreased by 10.78-34.28% and 7.50-27.65%, respectively, but they were sufficient for construction. The sorptivity increased by 1.45-15.16%, and the chloride resistance decreased by 15.09-56.35%, but the geopolymer mortar was still classified as low chloride penetrability. In summary, the optimal content of PVA fibres is 0.45 vol%, and the geopolymer mortar has good engineering properties and eco-efficiency. The cost analysis and high-temperature resistance of the geopolymer mortar are neglected in this study, which should be evaluated in future work.

9.
Nanomaterials (Basel) ; 12(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36296785

ABSTRACT

Vortex-induced vibration (VIV) is a process that wind energy converts to the mechanical energy of the bluff body. Enhancing VIV to harvest wind energy is a promising method to power wireless sensor nodes in the Internet of Things. In this work, a VIV-driven square cylinder triboelectric nanogenerator (SC-TENG) is proposed to harvest broadband wind energy. The vibration characteristic and output performance are studied experimentally to investigate the effect of the natural frequency by using five different springs in a wide range of stiffnesses (27 N/m

10.
RSC Adv ; 12(42): 27309-27320, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36276006

ABSTRACT

In this paper, a series of tungsten-zirconium mixed binary oxides (denoted as W m ZrO x ) were synthesized via co-precipitation as supports to prepare Ce0.4/W m ZrO x catalysts through an impregnation method. The promoting effect of W doping in ZrO2 on selective catalytic reduction (SCR) performance of Ce0.4/ZrO2 catalysts was investigated. The results demonstrated that addition of W in ZrO2 could remarkably enhance the catalytic performance of Ce0.4/ZrO2 catalysts in a broad temperature range. Especially when the W/Zr molar ratio was 0.1, the Ce0.4/W0.1ZrO x catalyst exhibited the widest active temperature window of 226-446 °C (NO x conversion rate > 80%) and its N2 selectivity was almost 100% in the temperature of 150-450 °C. Moreover, the Ce0.4/W0.1ZrO x catalyst also exhibited good SO2 tolerance, which could maintain more than 94% of NO x conversion efficiency after being exposed to a 100 ppm SO2 atmosphere for 18 h. Various characterization results manifested that a proper amount of W doping in ZrO2 was not only beneficial to enlarge the specific surface area of the catalyst, but also inhibited the growth of fluorite structure CeO2, which were in favor of CeO2 dispersion on the support. The presence of W was conducive to the growth of a stable tetragonal phase crystal of ZrO2 support, and a part of W and Zr combined to form W-Zr-O x solid super acid. Both of them resulted in abundant Lewis acid sites and Brønsted acid sites, enhancing the total surface acidity, thus significantly improving NH3 species adsorption on the surface of the Ce0.4/W0.1ZrO x catalyst. Furthermore, the promoting effect of adding W on SCR performance was also related to the improved redox capability, higher Ce3+/(Ce3+ + Ce4+) ratio and abundant surface chemisorbed oxygen species. The in situ DRIFTS results indicated that nitrate species adsorbed on the surface of the Ce0.4/W0.1ZrO x catalyst could react with NH3 due to the activation of W. Therefore, the reaction pathway over the Ce0.4/W0.1ZrO x catalyst followed both Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms at 250 °C.

11.
Biosensors (Basel) ; 12(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36140142

ABSTRACT

Identification of circulating tumor cells (CTCs) from a majority of various cell pools has been an appealing topic for diagnostic purposes. This study numerically demonstrates the isolation of CTCs from blood cells by the combination of dielectrophoresis and magnetophoresis in a microfluidic chip. Taking advantage of the label-free property, the separation of red blood cells, platelets, T cells, HT-29, and MDA-231 was conducted in the microchannel. By using the ferromagnet structure with double segments and a relatively shorter distance in between, a strong gradient of the magnetic field, i.e., sufficiently large MAP forces acting on the cells, can be generated, leading to a high separation resolution. In order to generate strong DEP forces, the non-uniform electric field gradient is induced by applying the electric voltage through the microchannel across a pair of asymmetric orifices, i.e., a small orifice and a large orifice on the opposite wall of the channel sides. The distribution of the gradient of the magnetic field near the edge of ferromagnet segments, the gradient of the non-uniform electric field in the vicinity of the asymmetric orifices, and the flow field were investigated. In this numerical simulation, the effects of the ferromagnet structure on the magnetic field, the flow rate, as well as the strength of the electric field on their combined magnetophoretic and dielectrophoretic behaviors and trajectories are systemically studied. The simulation results demonstrate the potential of both property- and size-based cell isolation in the microfluidic device by implementing magnetophoresis and dielectrophoresis.


Subject(s)
Microfluidic Analytical Techniques , Cell Separation , Electrophoresis , Lab-On-A-Chip Devices , Microfluidics
12.
Sensors (Basel) ; 22(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36146375

ABSTRACT

Pearl detection with a counter (PDC) in a noncontact and high-precision manner is a challenging task in the area of commercial production. Additionally, sea pearls are considered to be quite valuable, so the traditional manual counting methods are not satisfactory, as touching may cause damage to the pearls. In this paper, we conduct a comprehensive study on nine object-detection models, and the key metrics of these models are evaluated. The results indicate that using Faster R-CNN with ResNet152, which was pretrained on the pearl dataset, mAP@0.5IoU = 100% and mAP@0.75IoU = 98.83% are achieved for pearl recognition, requiring only 15.8 ms inference time with a counter after the first loading of the model. Finally, the superiority of the proposed algorithm of Faster R-CNN ResNet152 with a counter is verified through a comparison with eight other sophisticated object detectors with a counter. The experimental results on the self-made pearl image dataset show that the total loss decreased to 0.00044. Meanwhile, the classification loss and the localization loss of the model gradually decreased to less than 0.00019 and 0.00031, respectively. The robust performance of the proposed method across the pearl dataset indicates that Faster R-CNN ResNet152 with a counter is promising for natural light or artificial light peal detection and accurate counting.


Subject(s)
Deep Learning , Neural Networks, Computer , Algorithms , Research Design , Touch
13.
Nanomaterials (Basel) ; 12(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36014655

ABSTRACT

Vibration measurement and analysis play an important role in diagnosing mechanical faults, but existing vibration sensors are limited by issues such as dependence on external power sources and high costs. To overcome these challenges, the use of triboelectric nanogenerator (TENG)-based vibration sensors has recently attracted attention. These vibration sensors measure a small range of vibration frequencies and are not suitable for measuring high-frequency vibrations. Herein, a self-powered vibration sensor based on an elastic steel triboelectric nanogenerator (ES-TENG) is proposed. By optimizing the elastic steel sheet structure and combining time-frequency transformation and filtering processing methods, the measurement of medium- and high-frequency vibrations is achieved. These results demonstrate that the ES-TENG can perform vibration measurements in the range of 2-10,000 Hz, with a small average error (~0.42%) between the measured frequency and external vibration frequency values. Therefore, the ES-TENG can be used as a self-powered, highly-accurate vibration sensor for intelligent machinery monitoring.

14.
Sensors (Basel) ; 22(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35808420

ABSTRACT

Inductance detection is an important method for detecting wear debris in ship lubricating oil. Presently, an LCR (inductance, resistance, capacitance) meter is generally used to detect wear debris by measuring the inductance change of the sensing coil. When ferromagnetic debris passes through the sensing coil, a pulse will appear in the inductance signal. Previous studies have shown that the amplitude of the inductance pulse decreases significantly with the increase in the particles' velocity. Therefore, it is difficult to detect ferromagnetic debris with a high flow velocity using an LCR meter. In this paper, a novel method, high-frequency voltage acquisition (HFVA), is proposed to detect ferromagnetic debris. Different from previous methods, the wear debris was detected directly by measuring the voltage change of the sensing coil, while the synchronized sampling method was utilized to ensure the higher-frequency acquisition of the sensor output signal. The experimental results show that when the velocity of particles increased from 6 mm/s to 62 mm/s, the amplitude of the signal pulse obtained by HFVA decreased by only 13%, which was much lower than the 85% obtained by utilizing the LCR method.

15.
Nat Commun ; 13(1): 3325, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35680888

ABSTRACT

Underwater communication is a critical and challenging issue, on account of the complex underwater environment. This study introduces an underwater wireless communication approach via Maxwell's displacement current generated by a triboelectric nanogenerator. Underwater electric field can be generated through a wire connected to a triboelectric nanogenerator, while current signal can be inducted in an underwater receiver certain distance away. The received current signals are basically immune to disturbances from salinity, turbidity and submerged obstacles. Even after passing through a 100 m long spiral water pipe, the electric signals are not distorted in waveform. By modulating and demodulating the current signals generated by a sound driven triboelectric nanogenerator, texts and images can be transmitted in a water tank at 16 bits/s. An underwater lighting system is operated by the triboelectric nanogenerator-based voice-activated controller wirelessly. This triboelectric nanogenerator-based approach can form the basis for an alternative wireless communication in complex underwater environments.

16.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35215049

ABSTRACT

Harvesting wind energy from the ambient environment is a feasible method for powering wireless sensors and wireless transmission equipment. Triboelectric nanogenerators (TENGs) have proven to be a stable and promising technology for harvesting ambient wind energy. This study explores a new method for the performance enhancement and practical application of TENGs. An array of flag-type triboelectric nanogenerators (F-TENGs) for harvesting wind energy is proposed. An F-TENG consists of one piece of polytetrafluoroethylene (PTFE) membrane, which has two carbon-coated polyethylene terephthalate (PET) membranes on either side with their edges sealed. The PTFE was pre-ground to increase the initial charge on the surface and to enhance the effective contact area by improving the surface roughness, thus achieving a significant improvement in the output performance. The vertical and horizontal arrays of F-TENGs significantly improved the power output performance. The optimal power output performance was achieved when the vertical parallel distance was approximately 4D/15 (see the main text for the meaning of D), and the horizontal parallel distance was approximately 2D. We found that the peak output voltage and current of a single flag-type TENG of constant size were increased by 255% and 344%, respectively, reaching values of 64 V and 8 µA, respectively.

17.
Environ Pollut ; 297: 118773, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34974085

ABSTRACT

Microplastics (<5 mm) are divided into primary and secondary microplastics, which are further degraded into nanoplastics. The microplastic particles are widely distributed in marine environment, terrestrial ecosystem and biological organism, leading to damages to whole environmental system. Microplastics are not only difficult to degrade, but also able to adsorb pollutants. Due to the tiny size and various properties, the separation and characterization of microplastic particles has become more and more challenging. This review introduces the sources and destinations of the microplastic particles and summarizes the general methods for the sorting and characterization of microplastics, especially the manipulation of microplastic particles on microfluidic chip, showing possibility to deal with smaller nanoplastic particles over traditional methods. This review focuses on studies of the size-based separation and property-dependent characterization of microplastics in marine environment by utilizing the microfluidic chip device.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Microplastics , Plastics , Water Pollutants, Chemical/analysis
18.
Environ Sci Pollut Res Int ; 29(12): 17295-17308, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34661840

ABSTRACT

Pr-modified MnOx catalyst was synthesized through a facile co-precipitation process, and the results showed that MnPrOx catalyst exhibited much better selective catalytic reduction (SCR) activity and SO2 resistance performance than pristine MnOx catalyst. The addition of Pr in MnOx catalyst led to a complete NO conversion efficiency in 120-220 °C. Moreover, Pr-modified MnOx catalyst exhibited a superior resistance to H2O and SO2 compared with MnOx catalyst. After exposing to SO2 and H2O for 4 h, the NO conversion efficiency of MnPrOx catalyst could remain to 87.6%. The characterization techniques of XRD, BET, hydrogen-temperature programmed reduction (H2-TPR), ammonia-temperature programmed desorption (NH3-TPD), XPS, TG and in situ diffuse reflectance infrared spectroscopy (DRIFTS) were adopted to further explore the promoting effect of Pr doping in MnOx catalyst on SO2 resistance performance. The results showed that MnPrOx catalyst had larger specific surface area, stronger reducibility, and more L acid sites compared with MnOx catalyst. The relative percentage of Mn4+/Mnn+ on the MnPrOx-S catalyst surface was also much higher than those of MnOx catalyst. Importantly, when SO2 exists in feed gas, PrOx species in MnPrOx catalyst would preferentially react with SO2, thus protecting the Mn active sites. In addition, the introduction of Pr might promote the reaction between SO2 and NH3 rather than between SO2 and Mn active sites, which was also conductive to protect the Mn active sites to a great extent. Since the presence of SO2 in feed gas had little effect on NH3 adsorption on the MnPrOx catalyst surface, and the inhibiting effect of SO2 on NO adsorption was alleviated, SCR reactions could still proceed in a near-normal way through the Eley-Rideal (E-R) mechanism on Pr-modified MnOx catalyst, while SCR reactions through the Langmuir-Hinshelwood (L-H) mechanism were suppressed slightly.


Subject(s)
Ammonia , Adsorption , Ammonia/chemistry , Catalysis , Oxidation-Reduction , Temperature
19.
J Colloid Interface Sci ; 608(Pt 3): 2718-2729, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34785048

ABSTRACT

In this paper, sulfated ZrO2 were synthesized via precipitation and impregnation method, and the promoting effects of support sulfation on selective catalytic reduction (SCR) performance of CeO2/ZrO2 catalysts were investigated. The results revealed that sulfated ZrO2 could significantly enhance the SCR activity of CeO2/ZrO2 catalysts in a wide temperature range. Especially when S/Zr molar ratio was 0.1, CeO2/ZrO2-0.1S catalyst exhibited a large operating temperature window of 251 âˆ¼ 500 °C and its N2 selectivity was 100 % in the temperature range of 150 âˆ¼ 500 °C. Moreover, CeO2/ZrO2-0.1S catalyst possessed a superior low-temperature activity over 0.1S-CeO2/ZrO2 catalyst. After exposing to 100 ppm SO2 for 15 h, a high NO conversion efficiency of CeO2/ZrO2-0.1S catalyst (90.7 %) could still be reached. The characterization results indicated that ZrO2 treated with a proper dosage of sulfate acid was beneficial to enlarge the specific surface area greatly. Sulfated ZrO2 was also in favor of promoting the transformation of CeO2 from crystalline state to highly-dispersed amorphous state, and inhibiting the transformation of ZrO2 from tetragonal to monoclinic phase. It could also enhance the total surface acidity greatly with an increase in both Brønsted acid sites and Lewis acid sites, thus significantly improving NH3 adsorption on catalyst surface. Besides, the promoting effect of support sulfation on SCR performance of CeO2/ZrO2 catalysts was also related with the enhanced redox property, higher Ce3+/(Ce3++Ce4+) ratio and abundant surface chemisorbed labile oxygen. The in-situ DRIFTS results implied that nitrate species coordinated on the surface of CeO2/ZrO2-0.1S catalyst could participate in the Selective catalytic reduction with ammonia (NH3-SCR) reactions at either medium or high temperature, suggesting that both Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms might be followed in SCR reactions.


Subject(s)
Cerium , Sulfates , Ammonia , Catalysis , Oxidation-Reduction
20.
Nanomaterials (Basel) ; 11(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34947780

ABSTRACT

Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions. Remarkably, the CHR-TENG could achieve a 58.2% higher power density per unit of sound pressure of acoustic energy harvesting compared with the ever-reported best result. In addition, the reported CHR-TENG was demonstrated by charging a 1000 µF capacitor up to 3 V in 165 s, powering a sensor for continuous temperature and humidity monitoring and lighting up as many as five 0.5 W commercial LED bulbs for acoustic energy harvesting. With a collection features of high output performance, lightweight, wide frequency response band and environmental friendliness, the cleverly designed CHR-TENG represents a practicable acoustic energy harvesting approach for powering sensor devices in the age of the Internet of Things.

SELECTION OF CITATIONS
SEARCH DETAIL
...